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ABSTRACT: Multiscale modeling with crystal plasticity constitutive relations is used to 
determine the average response of a polycrystal. The measured crystallographic texture of 
a copper shaped charge liner is used in a crystal plasticity model to construct a yield 
surface that exhibits normal-shear coupling. Simulations with this yield surface model 
demonstrate the spinning behavior observed in the spin formed copper shaped charges. 

INTRODUCTION: Multiscale material modeling offers the promise of being able to 
determine material properties from simulations or measurements of the microstructure 
and then representing these effects on material behavior at a larger size scale. One 
application of this method is in determination of material anisotropy from crystalline 
orientation distribution functions to calibrate anisotropic yield surfaces used in full scale 
sheet forming calculations (e.g. Barlat et a1 [ 19971). 

The same principals are applied here in the analysis of effects of crystallographic texture 
on rotation of shaped charge jets using spin formed liners. The focus is on normal-shear 
coupling in a non-orthotropic material with the determination of constants for the 
anisotropic yield surface model based on plastic flow direction rather than yield stress 

Shaped charges are explosively driven munitions in which a thin-walled hollow cone of 
a liner material is collapsed to a convergence point. The high pressure at the convergence 
point causes the liner material to invert and squirt down the axis of the cone at a high 
velocity. If copper liners are uniaxially back extruded to form the cone, the jet simply 
shoots down the axis without rotation. If the conical liner is produced by a spin forming 
operation, the jet also has a superimposed rotation (Winer et al. [ 19931). 

PROCEDURES, RESULTS AND DISCUSSION: The approach is to use multiscale 
modeling to determine if the crystallographic texture of the spin formed liner could 
induce the rotation in the shaped charge jet. 

Construction of the Polycrystal Model: A spin-formed copper shaped charge liner was 
sectioned and the crystallographic orientations over a region of the cross section were 
measured in a scanning electron microscope using automated indexing of the electron 
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baskscatter diffraction patterns (Schwartz, et al. [200 11). The orientation data from this 
two dimensional section were used to obtain crystallographic orientations and grain sizes. 

K,, = 

The grain size and crystal orientation data were used to construct a finite element model 
of a representative volume element in which each of the grains was descretized by several 
elements. The constitutive response was determined using a crystal plasticity model. This 
accounted for some nonuniform deformation within the grains while satisfying 
compatibility exactly and equilibrium in an approximate descretized sense. A Taylor 
model, relaxed constraint model or self-consistent model could also be employed. 
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Continuum Yield Surface Model: The continuum yield surface was modeled by a 
generalized quadratic yield function. The form of the yield function and the plastic flow 
direction determined using assumptions of associated flow and a normality flow rule are: 

4 = do- - 0 = 0 

Here ol;. are the deviatoric components of the Cauchy stress; K,, is a matrix of 
coefficients characterizing the anisotropy in the given reference frame; 0 is the material 
flow strength measured in a uniaxial test; and A is the plastic multiplier. Eqn (1b) 
provides a liner relation for the 21 unknowns of K,, in terms of d: and 0,;. 

Determination of Anisotropy Coefficients: The polycrystalline representative volume 
element is exercised using three isochoric deformations along the three coordinate 
directions and three pure shear deformations. Each of these six simulations provides six 
equations for the 21 unknowns of K,, . Combining the results from the six simulations 
gives a system of 36 equations for 21 unknowns. The equations are solved using a 
singular valued decomposition algorithm that provides a solution in the least squared 
sense. For this sample, the result is the following symmetric matrix (in Voigt notation): 

Yield Surface Shape: Contours of the plane stress yield surface at different values of in- 
plane shear show a shift in the center of the elliptical contours as the shear stress 
increases. The contour shift is the primary effect of interest here. This represents normal- 



shear coupling where a stress applied along one of the coordinate directions induces a 
shear strain. This is also evident by examining the matrix in Eqn. (2). 

Prediction of Induced Rotation: To determine if the anisotropy computed from the 
measured crystallographic texture would induce a spin in a configuration similar to that 
of a shaped charge, a simulation was performed of the collapse of a ring due to suddenly 
applied external pressure. Fig. 1 shows a twist for the collapsed ring of the anisotropic 
material but no rotation for when the material is isotropic. 

Figure 1. Pressurized ring simulations: a) initial and collapsed ring; b) detail of collapsed 
ring for anisotropic material; c) detail of ring for isotropic material. 

CONCLUSIONS: This work has shown a successful application of multiscale modeling 
using measured microstructural data to confirm that the crystallographic texture could be 
a significant cause for the spinning of a shaped charge. 
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